MATH-5B TEST 2 v4 (7.1-7.5 and 7.8)
Spring 2024
100 points
NAME:

- Phones must be turned OFF and put away. Any visible phone (smart watch, headphones, ipad etc.) will result in a grade F. Hands must remain in view during the exam.
- No scratch paper.
- No credit will be given for solutions if work is not shown.
- I expect clear and legible presentations with words of explanation.

YOU MAY USE ONE PAGE OF NOTES.
Fill in the blanks. (3 points each)
(1) $\int \sin ^{2} x d x=\frac{1}{2} x-\frac{1}{4} \sin 2 x+C$
(2) $\int \cos \left(\frac{1}{2} x\right) d x=2 \sin \left(\frac{1}{2} x\right)+C$
(3) $\int \frac{1}{5 x+4} d x=-\frac{1}{5} \ln |5 x+4|+C$

FOR PROBLEMS 4-12, INTEGRATE AND SIMPLIFY (9 pts each)
You may not use any integration formulas other than those covered in class.
(4) $\int \tan x \sec ^{3} x d x$

$$
\begin{aligned}
& =\int \tan x \sec x \sec ^{2} x d x \quad \begin{array}{l}
u=\sec x \\
d u=\sec x \tan x d x \\
=\int u^{2} d y \\
=\frac{1}{3} u^{3}+c \\
=\frac{1}{3} \sec ^{3} x+c
\end{array}, l
\end{aligned}
$$

Remember -you can always crock by differentiation.

$$
\begin{aligned}
\frac{d}{d x}\left(\frac{1}{3} \sec ^{3} x\right)=\sec ^{2} x \frac{d}{d x}(\sec x) & =\sec ^{2} x \sec x \tan x \\
& =\sec ^{3} x \tan x
\end{aligned}
$$

$$
\text { (5) } \begin{aligned}
& \int \frac{x^{2}}{\sqrt{4-x^{2}}} d x \quad d x=2 \sin \theta \\
= & \int \frac{4 \sin ^{2} \theta}{\sqrt{4-4 \sin ^{2} \theta}} 2 \cos \theta d \theta \\
= & \int 4 \sin ^{2} \theta d \theta \\
= & 4\left(\frac{1}{2} \theta-\frac{1}{2} \sin \theta \cos \theta\right)+C \\
= & 2 \theta-2 \sin \theta \cos \theta+C \\
= & 2 \sin ^{-1} \frac{x}{2}-2 \frac{x}{2} \frac{\sqrt{4-x^{2}}}{2}+C \\
= & 2 \sin ^{-1} \frac{x}{2}-\frac{x \sqrt{4-x^{2}}}{2}+C
\end{aligned}
$$

$$
\begin{aligned}
& \text { (6) } \begin{array}{l}
\int \frac{e^{1 / x}}{x^{3}} d x \quad u=1 / x \\
\int e^{\frac{1}{x}} \frac{1}{x} \cdot \frac{1}{x^{3}} d x=\frac{-1}{x^{2}} d x \\
-\int u e^{4} d u \quad u=u \quad d v=e^{u} d u \\
-\left(u e^{u}-\int e^{u} d u\right)+c \\
-u e^{u}+e^{u}+c
\end{array} . \quad d u=d u \quad v=e^{u}
\end{aligned}
$$

$$
-\frac{e^{1 / x}}{x}+e^{1 / x}+c
$$

This was a HW problem
(7) $\int x \sqrt{7-x^{2}} d x$

$$
\begin{aligned}
& -\frac{1}{2} \int u^{1 / 2} d u \\
& -\frac{1}{3} u^{3 / 2}+c \\
& -\frac{1}{3}\left(7-x^{2}\right)^{3 / 2}+c
\end{aligned}
$$

$$
u=7-x^{2}
$$

$$
d u=-2 x d x
$$

(8)
(8) $\int \frac{1}{\sqrt{x^{2}+2 x+5}} d x$
$=\int \frac{1}{\sqrt{(x+1)^{2}+4}} d x$

$x+1=2 \tan \theta$ $d x=2 \sec ^{2} \theta d \theta$
$=\int \frac{1}{\sqrt{4 \tan ^{2} \theta+4}} 2 \sec ^{2} \theta d \theta$
$=\int \sec \theta d \theta$
$=\ln |\sec \theta+\tan \theta|+C$

$$
=\ln \left|\frac{\sqrt{x^{2}+2 x+5}}{2}+\frac{x+1}{2}\right|+c
$$

(This was a HW problem)

$$
\begin{aligned}
& \text { (9) } \int \frac{1}{1+\sqrt[3]{x}} d x \\
& \begin{array}{l}
u=x^{1 / 3} \\
u^{3}=x
\end{array} \begin{array}{l}
T h w_{s} w_{a s} \\
s_{n}
\end{array} \\
& u^{3}=x \\
& 3 u^{2} d u=d x \\
& \int \frac{3 u^{2}}{1+u} d u \rightarrow \text { divick } \\
& =\int\left(3 u-3+\frac{3}{u+1}\right) d u \\
& u+1) \frac{3 u-3}{3 u^{2}} \\
& \frac{-\left(3 u^{2}+3 u\right)}{-3 u} \\
& \frac{-(-3 \varphi-3)}{3} \\
& =\frac{3}{2} u^{2}-3 u+3 \ln |v|+C \\
& =\frac{3}{2} x^{2 / 3}-3 x^{1 / 3}+3 \ln \left|x^{1 / 3}\right|+C
\end{aligned}
$$

(10) $\int \frac{4 x^{2}-2 x}{\left(x^{2}+1\right)(x-1)} d x=\frac{A}{x-1}+\frac{B x+C}{x^{2}+1}=\frac{A\left(x^{2}+1\right)+(B x+C)(x-1)}{(x-1)\left(x^{2}+1\right)}$

Note:: If your solution gets overly arithmetically complicated, you have probably made a mistake.

$$
\begin{aligned}
4 x^{2}-2 x & \left.=A\left(x^{2}+C\right)+B x+C\right)(x-1) \\
4 x^{2}-2 x & =A\left(x^{2}+1\right)+B x^{2}+C x-B x-C \\
4 x^{2}-2 x & =(A+B) x^{2} T(C-B) x+A-C
\end{aligned}
$$

$A+B=4$

$$
C-B=-2
$$

$$
A-C=0
$$

Also, short cut:
If $x=1$

$$
* \quad 2=2 A
$$

$$
A=1
$$

$$
\Rightarrow B=3, C=1
$$

$$
\begin{aligned}
& \int \frac{4 x^{2}-2 x}{\left(x^{2}+1\right)(x-1)} d x=\int\left(\frac{1}{x-1}+\frac{3 x+1}{x^{2}+1}\right) d x \\
&= \int \frac{1}{x-1} d x+\int \frac{3 x}{x^{2}+1} d x+\int \frac{1}{x^{2}+1} d x \\
&= \int \frac{1}{u} d u+x-1 \\
&= \frac{t}{t}=x^{2}+1 \\
&= \ln |u|+2 x d x \\
&= \ln |x-1|+\frac{1}{t} d+\tan ^{-1} x+C \\
& 3 / 2 \ln |c|+\tan ^{-1} x+C \\
& \frac{3}{2} \ln \left(x^{2}+1\right)+\tan ^{-1} x+C
\end{aligned}
$$

(11)

$$
\int_{0}^{\infty} \frac{x}{x^{4}+1} d x
$$

$$
=\lim _{t \rightarrow \infty} \int_{d}^{t} \frac{x}{x^{4}+1} d x
$$

$$
\begin{gathered}
\int \frac{x}{x^{4}+1} d x \quad \begin{array}{l}
u=x^{2} \\
d u=2 x d x \\
\frac{1}{2} \int \frac{d u}{u^{2}+1}
\end{array}=\frac{1}{2} \tan ^{-1} u+c \\
\\
=\frac{1}{2} \tan \left(x^{2}\right)+c
\end{gathered}
$$

$$
\left.=\lim _{t \rightarrow \infty} \frac{1}{2} \tan ^{-1}\left(x^{2}\right)\right]_{0}^{t}
$$

$$
=\lim _{t \rightarrow \infty} \frac{1}{2} \tan ^{-1}\left(t^{2}\right)
$$

$$
=\frac{1}{2}\left(\frac{\pi}{2}\right)=\frac{\pi}{4}
$$

(12) $\int_{0}^{1} \frac{\ln x}{\sqrt{x}} d x$

$$
\begin{aligned}
\int_{0}^{1} \frac{\ln x}{\sqrt{x}} d x & =\lim _{t \rightarrow 0^{+}} \int_{t} \frac{\ln x}{\sqrt{x}} d x \\
& \left.=\lim _{t \rightarrow 0^{+}} 2 \sqrt{x} \ln x-4 \sqrt{x}\right]_{t}^{1} \\
& =\lim _{t \rightarrow 0^{+}}-4-(2 \sqrt{t} \ln t-4 \sqrt{t})
\end{aligned}
$$

$$
=\lim _{t \rightarrow 0^{+}}-4-2 \sqrt{t} \ln t=-4-\lim _{t \rightarrow 0^{+}} t \ln t=-4
$$

$$
\rightarrow \text { indeterminate }^{0} 0-20
$$

Find the area of the region enclosed by $f(x)=x^{3} \sqrt{4-x^{2}}$, and the x axis
where does the 9 kph intersect the x-axis

$$
\begin{array}{r}
0=x^{3} \sqrt{4-x^{2}} \\
x=0,2,-2
\end{array}
$$

$f(x)$ is od, symmetry w.r.t origin so we can find the area on

$$
\begin{gathered}
\int_{0}^{2} x^{3} \sqrt{4-x^{2}} d x \quad \begin{array}{l}
u=4-x^{2} \\
d u=-2 x d x
\end{array} \quad x^{2}=4-u \\
-\frac{1}{2} \int_{4}^{0}(4-u) \sqrt{u} d u=\frac{1}{2} \int_{0}^{4}\left(4 u^{1 / 2}-u^{3 / 2}\right) d u \\
\left.\frac{1}{2}\left(\frac{8}{3} u^{3 / 2}-\frac{2}{5} u^{5 / 2}\right)\right]_{0}^{4} \\
\left.\frac{4}{3} u^{3 / 2}-\frac{1}{5} u^{5 / 2}\right]_{0}^{4} \\
\frac{4}{3} \cdot 8-\frac{1}{5} \cdot 32=\frac{32}{3}-\frac{32}{5}=\frac{256}{15}
\end{gathered}
$$

